Heart Modeling

From electrophysiology to electromechanics

During the final year of my Master’s, I was working at Siemens Corporate Technology in Princeton, NJ, USA, on a very interesting project dealing with various aspects of electrophysiology and biomechanics models of the human heart muscle. My time there was one of my most productive phases so far, with not only the successful completion of my MSc thesis titled “Efficient and Robust Patient-Specific Model of the Heart Function based on MRI Images” but also a great publication outcome (see below).

In my work, fast and robust patient-specific parameter estimation for a biomechanic model of the human heart from clinical and imaging data is investigated. Of course, my results are based on available models of heart anatomy and electrophysiology, and – working in a great team at Siemens – I could heavily benefit from extensive experience in heart segmentation and model generation.

My thesis has two major contributions: First, an integrated framework to compute cardiac motion using a finite element setup is presented, in particular including an efficient strategy to parallelize the evaluation of stress and mechanical boundary conditions for high-performance implementations. Second, a novel, data-driven approach to calibrate electrophysiology (EP) parameters from clinically available 12-lead electrocardiograms (ECGs) is introduced, as illustrated in the figure.

Forward workflow to compute ECG parameters from electrophysiology (EP) model derived from segmented myocardium, and backward workflow to estimate EP model parameters from measured ECG features.

And this is what the final result looks like:



2014

  1. zettinig2013stacom.png
    A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation
    Tommaso Mansi, Roy Beinart, Oliver Zettinig, Saikiran Rapaka, Bogdan Georgescu, Ali Kamen, Yoav Dori, M. Muz Zviman, Daniel A. Herzka, Henry R. Halperin, and Dorin Comaniciu
    In Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, Jan 2014
  2. Patent
    drawing.png
    Method and System for Interactive Computation of Cardiac Electromechanics
    Tommaso Mansi, Oliver Zettinig, Bogdan Georgescu, Ali Kamen, Dorin Comaniciu, and Saikiran Rapaka
    Jan 2014
  3. zettinig2014media.png
    Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals
    Oliver Zettinig, Tommaso Mansi, Dominik Neumann, Bogdan Georgescu, Saikiran Rapaka, Philipp Seegerer, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Ali Amr, Jan Haas, Henning Steen, Hugo Katus, Benjamin Meder, Nassir Navab, Ali Kamen, and Dorin Comaniciu
    Medical Image Analysis, Dec 2014
    Publisher: Elsevier

2013

  1. hpmiccai2013.png
    Towards Real-Time Cardiac Electrophysiology Computations Using GP-GPU Lattice-Boltzmann Method
    Bogdan Georgescu, Saikiran Rapaka, Tommaso Mansi, Oliver Zettinig, Ali Kamen, and Dorin Comaniciu
    In MICCAI Workshop on High Performance Computing for Biomedical Image Analysis–HPC-MICCAI, Sep 2013
  2. zettinig2013miccai.png
    Fast Data-Driven Calibration of a Cardiac Electrophysiology Model from Images and ECG
    Oliver Zettinig, Tommaso Mansi, Bogdan Georgescu, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Ali Amr, Jan Haas, Henning Steen, Benjamin Meder, Hugo Katus, Nassir Navab, Ali Kamen, and Dorin Comaniciu
    In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, Sep 2013
  3. fimh2013-fastem.png
    From Medical Images to Fast Computational Models of Heart Electromechanics: An Integrated Framework towards Clinical Use
    Oliver Zettinig, Tommaso Mansi, Bogdan Georgescu, Saikiran Rapaka, Ali Kamen, Jan Haas, Karen S Frese, Farbod Sedaghat-Hamedani, Elham Kayvanpour, Ali Amr, Stefan Hardt, Derliz Mereles, Henning Steen, Andreas Keller, Hugo A Katus, Benjamin Meder, Nassir Navab, and Dorin Comaniciu
    In Functional Imaging and Modeling of the Heart, Jun 2013